CivArchive
    Tongyi-MAI/Z-Image - master
    Preview 1
    Preview 2
    Preview 3
    Preview 4

    ⚡️- Image
    An Efficient Image Generation Foundation Model with Single-Stream Diffusion Transformer

    [![Official Site](https://img.shields.io/badge/Official%20Site-333399.svg?logo=homepage)](https://tongyi-mai.github.io/Z-Image-blog/)  [![GitHub](https://img.shields.io/badge/GitHub-Z--Image-181717?logo=github&logoColor=white)](https://github.com/Tongyi-MAI/Z-Image)  [![Hugging Face](https://img.shields.io/badge/%F0%9F%A4%97%20Checkpoint-Z--Image-yellow)](https://huggingface.co/Tongyi-MAI/Z-Image)  [![Hugging Face](https://img.shields.io/badge/%F0%9F%A4%97%20Online_Demo-Z--Image-blue)](https://huggingface.co/spaces/Tongyi-MAI/Z-Image)  [![ModelScope Model](https://img.shields.io/badge/🤖%20Checkpoint-Z--Image-624aff)](https://www.modelscope.cn/models/Tongyi-MAI/Z-Image)  [![ModelScope Space](https://img.shields.io/badge/🤖%20Online_Demo-Z--Image-17c7a7)](https://www.modelscope.cn/aigc/imageGeneration?tab=advanced&versionId=569345&modelType=Checkpoint&sdVersion=Z_IMAGE&modelUrl=modelscope%3A%2F%2FTongyi-MAI%2FZ-Image%3Frevision%3Dmaster)  Welcome to the official repository for the Z-Image(造相)project!
    ## 🎨 Z-Image ![Teaser](teaser.jpg) ![asethetic](https://cdn-uploads.huggingface.co/production/uploads/64379d79fac5ea753f1c10f3/RftwBF4PzC0_L9GvETPZz.jpeg) ![diverse](https://cdn-uploads.huggingface.co/production/uploads/64379d79fac5ea753f1c10f3/HiFeAD2XUTmlxgdWHwhss.jpeg) ![negative](https://cdn-uploads.huggingface.co/production/uploads/64379d79fac5ea753f1c10f3/rECmhpZys1siGgEO8L6Fi.jpeg) **Z-Image** is the foundation model of the ⚡️- Image family, engineered for good quality, robust generative diversity, broad stylistic coverage, and precise prompt adherence. While Z-Image-Turbo is built for speed, Z-Image is a full-capacity, undistilled transformer designed to be the backbone for creators, researchers, and developers who require the highest level of creative freedom. ![z-image](https://cdn-uploads.huggingface.co/production/uploads/64379d79fac5ea753f1c10f3/kt_A-s5vMQ6L-_sUjNUCG.jpeg) ### 🌟 Key Features - **Undistilled Foundation**: As a non-distilled base model, Z-Image preserves the complete training signal. It supports full Classifier-Free Guidance (CFG), providing the precision required for complex prompt engineering and professional workflows. - **Aesthetic Versatility**: Z-Image masters a vast spectrum of visual languages—from hyper-realistic photography and cinematic digital art to intricate anime and stylized illustrations. It is the ideal engine for scenarios requiring rich, multi-dimensional expression. - **Enhanced Output Diversity**: Built for exploration, Z-Image delivers significantly higher variability in composition, facial identity, and lighting across different seeds, ensuring that multi-person scenes remain distinct and dynamic. - **Built for Development**: The ideal starting point for the community. Its non-distilled nature makes it a good base for LoRA training, structural conditioning (ControlNet) and semantic conditioning. - **Robust Negative Control**: Responds with high fidelity to negative prompting, allowing users to reliably suppress artifacts and adjust compositions. ### 🆚 Z-Image vs Z-Image-Turbo | Aspect | Z-Image | Z-Image-Turbo | |------|------|------| | CFG | ✅ | ❌ | | Steps | 28~50 | 8 | | Fintunablity | ✅ | ❌ | | Negative Prompting | ✅ | ❌ | | Diversity | High | Low | | Visual Quality | High | Very High | | RL | ❌ | ✅ | ## 🚀 Quick Start ### Installation & Download Install the latest version of diffusers: ```bash pip install git+https://github.com/huggingface/diffusers ``` Download the model: ```bash pip install -U huggingface_hub HF_XET_HIGH_PERFORMANCE=1 hf download Tongyi-MAI/Z-Image ``` ### Recommended Parameters - **Resolution:** 512×512 to 2048×2048 (total pixel area, any aspect ratio) - **Guidance scale:** 3.0 – 5.0 - **Inference steps:** 28 – 50 ### Usage Example ```python import torch from diffusers import ZImagePipeline # Load the pipeline pipe = ZImagePipeline.from_pretrained( "Tongyi-MAI/Z-Image", torch_dtype=torch.bfloat16, low_cpu_mem_usage=False, ) pipe.to("cuda") # Generate image prompt = "两名年轻亚裔女性紧密站在一起,背景为朴素的灰色纹理墙面,可能是室内地毯地面。左侧女性留着长卷发,身穿藏青色毛衣,左袖有奶油色褶皱装饰,内搭白色立领衬衫,下身白色裤子;佩戴小巧金色耳钉,双臂交叉于背后。右侧女性留直肩长发,身穿奶油色卫衣,胸前印有“Tun the tables”字样,下方为“New ideas”,搭配白色裤子;佩戴银色小环耳环,双臂交叉于胸前。两人均面带微笑直视镜头。照片,自然光照明,柔和阴影,以藏青、奶油白为主的中性色调,休闲时尚摄影,中等景深,面部和上半身对焦清晰,姿态放松,表情友好,室内环境,地毯地面,纯色背景。" negative_prompt = "" # Optional, but would be powerful when you want to remove some unwanted content image = pipe( prompt=prompt, negative_prompt=negative_prompt, height=1280, width=720, cfg_normalization=False, num_inference_steps=50, guidance_scale=4, generator=torch.Generator("cuda").manual_seed(42), ).images[0] image.save("example.png") ``` ## 📜 Citation If you find our work useful in your research, please consider citing: ```bibtex @article{team2025zimage, title={Z-Image: An Efficient Image Generation Foundation Model with Single-Stream Diffusion Transformer}, author={Z-Image Team}, journal={arXiv preprint arXiv:2511.22699}, year={2025} } ```

    Description

    Checkpoint
    Z-Image

    Details

    Downloads
    3,797
    Platform
    Civision
    Platform Status
    Available
    Created
    1/23/2026
    Updated
    1/30/2026
    Deleted
    -

    Files

    transformer/diffusion_pytorch_model-00001-of-00002.safetensors

    Mirrors

    Other Platforms (TensorArt, SeaArt, etc.) (1 mirrors)