⚡️- Image
An Efficient Image Generation Foundation Model with Single-Stream Diffusion Transformer
[](https://tongyi-mai.github.io/Z-Image-blog/)
[](https://github.com/Tongyi-MAI/Z-Image)
[](https://huggingface.co/Tongyi-MAI/Z-Image)
[](https://huggingface.co/spaces/Tongyi-MAI/Z-Image)
[](https://www.modelscope.cn/models/Tongyi-MAI/Z-Image)
[](https://www.modelscope.cn/aigc/imageGeneration?tab=advanced&versionId=569345&modelType=Checkpoint&sdVersion=Z_IMAGE&modelUrl=modelscope%3A%2F%2FTongyi-MAI%2FZ-Image%3Frevision%3Dmaster)
Welcome to the official repository for the Z-Image(造相)project!
## 🎨 Z-Image




**Z-Image** is the foundation model of the ⚡️- Image family, engineered for good quality, robust generative diversity, broad stylistic coverage, and precise prompt adherence.
While Z-Image-Turbo is built for speed,
Z-Image is a full-capacity, undistilled transformer designed to be the backbone for creators, researchers, and developers who require the highest level of creative freedom.

### 🌟 Key Features
- **Undistilled Foundation**: As a non-distilled base model, Z-Image preserves the complete training signal. It supports full Classifier-Free Guidance (CFG), providing the precision required for complex prompt engineering and professional workflows.
- **Aesthetic Versatility**: Z-Image masters a vast spectrum of visual languages—from hyper-realistic photography and cinematic digital art to intricate anime and stylized illustrations. It is the ideal engine for scenarios requiring rich, multi-dimensional expression.
- **Enhanced Output Diversity**: Built for exploration, Z-Image delivers significantly higher variability in composition, facial identity, and lighting across different seeds, ensuring that multi-person scenes remain distinct and dynamic.
- **Built for Development**: The ideal starting point for the community. Its non-distilled nature makes it a good base for LoRA training, structural conditioning (ControlNet) and semantic conditioning.
- **Robust Negative Control**: Responds with high fidelity to negative prompting, allowing users to reliably suppress artifacts and adjust compositions.
### 🆚 Z-Image vs Z-Image-Turbo
| Aspect | Z-Image | Z-Image-Turbo |
|------|------|------|
| CFG | ✅ | ❌ |
| Steps | 28~50 | 8 |
| Fintunablity | ✅ | ❌ |
| Negative Prompting | ✅ | ❌ |
| Diversity | High | Low |
| Visual Quality | High | Very High |
| RL | ❌ | ✅ |
## 🚀 Quick Start
### Installation & Download
Install the latest version of diffusers:
```bash
pip install git+https://github.com/huggingface/diffusers
```
Download the model:
```bash
pip install -U huggingface_hub
HF_XET_HIGH_PERFORMANCE=1 hf download Tongyi-MAI/Z-Image
```
### Recommended Parameters
- **Resolution:** 512×512 to 2048×2048 (total pixel area, any aspect ratio)
- **Guidance scale:** 3.0 – 5.0
- **Inference steps:** 28 – 50
### Usage Example
```python
import torch
from diffusers import ZImagePipeline
# Load the pipeline
pipe = ZImagePipeline.from_pretrained(
"Tongyi-MAI/Z-Image",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=False,
)
pipe.to("cuda")
# Generate image
prompt = "两名年轻亚裔女性紧密站在一起,背景为朴素的灰色纹理墙面,可能是室内地毯地面。左侧女性留着长卷发,身穿藏青色毛衣,左袖有奶油色褶皱装饰,内搭白色立领衬衫,下身白色裤子;佩戴小巧金色耳钉,双臂交叉于背后。右侧女性留直肩长发,身穿奶油色卫衣,胸前印有“Tun the tables”字样,下方为“New ideas”,搭配白色裤子;佩戴银色小环耳环,双臂交叉于胸前。两人均面带微笑直视镜头。照片,自然光照明,柔和阴影,以藏青、奶油白为主的中性色调,休闲时尚摄影,中等景深,面部和上半身对焦清晰,姿态放松,表情友好,室内环境,地毯地面,纯色背景。"
negative_prompt = "" # Optional, but would be powerful when you want to remove some unwanted content
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=1280,
width=720,
cfg_normalization=False,
num_inference_steps=50,
guidance_scale=4,
generator=torch.Generator("cuda").manual_seed(42),
).images[0]
image.save("example.png")
```
## 📜 Citation
If you find our work useful in your research, please consider citing:
```bibtex
@article{team2025zimage,
title={Z-Image: An Efficient Image Generation Foundation Model with Single-Stream Diffusion Transformer},
author={Z-Image Team},
journal={arXiv preprint arXiv:2511.22699},
year={2025}
}
```
Description
Details
Downloads
3,797
Platform
Civision
Platform Status
Available
Created
1/23/2026
Updated
1/30/2026
Deleted
-
Files
transformer/diffusion_pytorch_model-00001-of-00002.safetensors
Size:
11.46 GB
SHA256:
79c77975fefbebcf39eb6d79f35d9a7fce1de5c73bf396daf5df3873a77c73ce1eebddfd73b71c7f7d1ad9ed1ddb8db9Mirrors
Other Platforms (TensorArt, SeaArt, etc.) (1 mirrors)



