CivArchive
    Knife XL FFusion - CivitaI / LoRA + FA Text Encoder - Knife XL FFusion CivitAI
    Preview 2584619Preview 2582999Preview 2583022Preview 2583021Preview 2583023Preview 2583018Preview 2583019Preview 2583024Preview 2583032Preview 2583025Preview 2583026Preview 2583028Preview 2583027Preview 2583004Preview 2583029Preview 2583031Preview 2583030Preview 2582955Preview 2582963Preview 2582962

    🗡️ FFusionAI's Knife LoRA Model Demonstrations

    This demonstration dives deep into the intricacies of three distinct LoRA trainings. Each model has been meticulously trained on a unique dataset of 200 knives, captured in the professional environment of our partner, NoramePhotography Studio. The visuals span from pure white studio shots to rustic wood settings, glinting coins, and fantasy-inspired indoor decor.

    🔍 Dataset Insight: The dataset, although rich in variety, was curated with a fast and informal tagging approach, mainly for demonstration purposes. If you're intrigued by the knife photo session and wish for a more in-depth training, do let us know!

    While depth variations are in the pipeline, our current focus revolves around evaluating the distinct LoRA variations.

    🎯 Models at a Glance:

    1. CivitAI's Quick LoRA Training (Lora1)

    📌 Highlights:

    • Powered by CivitAI's new LoRA trainer.

    • Swift 10-epoch run, completed in a breezy 20-30 minutes.

    • Quality may vary with default settings, but hey, time is essence!

    📊 Specifications:

    • Date: 2023-09-19T14:36:14

    • Resolution: 1024x1024

    • Architecture: stable-diffusion-xl-v1-base/lora

    • Network Dim/Rank: 32.0

    • Alpha: 16.0

    Knife_XL_FFusion.safetensors
    Date: 2023-09-19T14:36:14 Title: Knife_XL_FFusion
    Resolution: 1024x1024 Architecture: stable-diffusion-xl-v1-base/lora
    Network Dim/Rank: 32.0 Alpha: 16.0
    Module: networks.lora
    Learning Rate (LR): 0.0005 UNet LR: 0.0005 TE LR: 5e-05
    Optimizer: bitsandbytes.optim.adamw.AdamW8bit(weight_decay=0.1)
    Scheduler: cosine_with_restarts  Warmup steps: 0
    Epoch: 10 Batches per epoch: 74 Gradient accumulation steps: 1
    Train images: 282 Regularization images: 0
    Multires noise iterations: 6.0 Multires noise discount: 0.3
    Min SNR gamma: 5.0 Zero terminal SNR: True Max grad norm: 1.0  Clip skip: 1
    Dataset dirs: 1
            [img] 282 images
    UNet weight average magnitude: 2.634092236933176
    UNet weight average strength: 0.009947009810559605
    Text Encoder (1) weight average magnitude: 1.696394163771355
    Text Encoder (1) weight average strength: 0.008538951936953606
    Text Encoder (2) weight average magnitude: 1.720911101275907
    Text Encoder (2) weight average strength: 0.006699097931942388

    2. LoRA FA with Text Encoder Only (Lora2)

    📌 Highlights:

    • Exclusive training on text encoder.

    • Absence of UNet in this LoRA variant.

    📊 Specifications:

    • Date: 2023-09-19T20:04:24

    • Resolution: 1024x1024

    • Architecture: stable-diffusion-xl-v1-base/lora

    • Network Dim/Rank: 32.0

    • Alpha: 32.0

    Knife-FFusion-LoRA-FA.safetensors
    
    Date: 2023-09-19T20:04:24 Title: Knife-FFusion-LoRA-FA
    Resolution: 1024x1024 Architecture: stable-diffusion-xl-v1-base/lora
    Network Dim/Rank: 32.0 Alpha: 32.0
    Module: networks.lora_fa
    
    Text Encoder (1) weight average magnitude: 3.986337637923385
    Text Encoder (1) weight average strength: 0.018590648076750333
    Text Encoder (2) weight average magnitude: 4.043434837883338
    Text Encoder (2) weight average strength: 0.014620680042179104
    No UNet found in this LoRA

    3. General LoRA Training

    📌 Highlights:

    • Comprehensive LoRA training with diverse specifications.

    • Trained on an extensive dataset of 485 knife images.

    📊 Specifications:

    • Date: 2023-08-26T23:08:56

    • Resolution: 1024x1024

    • Architecture: stable-diffusion-xl-v1-base/lora

    • Network Dim/Rank: 32.0

    • Alpha: 16.0

      FF-Minecraft-XL
      Resolution: 1024x1024 Architecture: stable-diffusion-xl-v1-base/lora
      Network Dim/Rank: 32.0 Alpha: 16.0
      Module: networks.lora
      Learning Rate (LR): 0.0005 UNet LR: 0.0005 TE LR: 5e-05
      Optimizer: bitsandbytes.optim.adamw.AdamW8bit(weight_decay=0.1)
      Scheduler: cosine_with_restarts  Warmup steps: 0
      Epoch: 10 Batches per epoch: 121 Gradient accumulation steps: 1
      Train images: 458 Regularization images: 0
      Multires noise iterations: 6.0 Multires noise discount: 0.3
      Min SNR gamma: 5.0 Zero terminal SNR: True Max grad norm: 1.0  Clip skip: 1
      Dataset dirs: 1
              [img] 458 images
      UNet weight average magnitude: 2.9987627096874507
      UNet weight average strength: 0.011098071585284945
      Text Encoder (1) weight average magnitude: 1.729993708156961
      Text Encoder (1) weight average strength: 0.008685239007756952
      Text Encoder (2) weight average magnitude: 1.7630326984758309
      Text Encoder (2) weight average strength: 0.0068346636309082635

    🎨 Readme Crafted by: 🤖 & FFusionAI 🚀

    🌐 Contact Information

    The FFusion.ai project is proudly maintained by Source Code Bulgaria Ltd & Black Swan Technologies.

    📧 Reach us at [email protected] for any inquiries or support.

    🌌 Find us on:

    Email

    🌍 Sofia Istanbul London

    Description

    Knife_XL_FFusion.safetensors

    Date: 2023-09-19T14:36:14 Title: Knife_XL_FFusion

    Resolution: 1024x1024 Architecture: stable-diffusion-xl-v1-base/lora

    Network Dim/Rank: 32.0 Alpha: 16.0

    Module: networks.lora

    Learning Rate (LR): 0.0005 UNet LR: 0.0005 TE LR: 5e-05

    Optimizer: bitsandbytes.optim.adamw.AdamW8bit(weight_decay=0.1)

    Scheduler: cosine_with_restarts Warmup steps: 0

    Epoch: 10 Batches per epoch: 74 Gradient accumulation steps: 1

    Train images: 282 Regularization images: 0

    Multires noise iterations: 6.0 Multires noise discount: 0.3

    Min SNR gamma: 5.0 Zero terminal SNR: True Max grad norm: 1.0 Clip skip: 1

    Dataset dirs: 1

    [img] 282 images

    UNet weight average magnitude: 2.634092236933176

    UNet weight average strength: 0.009947009810559605

    Text Encoder (1) weight average magnitude: 1.696394163771355

    Text Encoder (1) weight average strength: 0.008538951936953606

    Text Encoder (2) weight average magnitude: 1.720911101275907

    Text Encoder (2) weight average strength: 0.006699097931942388

    LORA
    SDXL 1.0
    by idle

    Details

    Downloads
    177
    Platform
    CivitAI
    Platform Status
    Available
    Created
    9/19/2023
    Updated
    9/27/2025
    Deleted
    -

    Files

    165380_training_data.zip

    Mirrors

    CivitAI (1 mirrors)

    Knife_XL_FFusion.safetensors

    Mirrors

    CivitAI (1 mirrors)