CivArchive
    Preview 89907670Preview 89908325Preview 89837391Preview 89837437Preview 89908356Preview 89907391Preview 89907390Preview 89837458Preview 89838532Preview 89838631Preview 89838675Preview 89838768Preview 89838833Preview 89838959Preview 89839160Preview 89908304Preview 89907607Preview 89908098

    - Follow for more updates at http://discord.com/invite/TTTGccjbEa

    - Try Model: Huggingface Playground

    - Access to more training versions

    - 中文模型说明

    - QQ group: 1039442542


    Introduction

    Neta Lumina is a high‑quality anime‑style image‑generation model developed by Neta.art Lab.

    Building on the open‑source Lumina‑Image‑2.0 released by the Alpha‑VLLM team at Shanghai AI Laboratory, we fine‑tuned the model with a vast corpus of high‑quality anime images and multilingual tag data. The preliminary result is a compelling model with powerful comprehension and interpretation abilities (thanks to Gemma text encoder), ideal for illustration, posters, storyboards, character design, and more.

    Key Features

    • Optimized for diverse creative scenarios such as Furry, Guofeng (traditional‑Chinese aesthetics), pets, etc.

    • Wide coverage of characters and styles, from popular to niche concepts. (Still support danbooru tags!)

    • Accurate natural‑language understanding with excellent adherence to complex prompts.

    • Native multilingual support, with Chinese, English, and Japanese recommended first.

    Model Versions

    For models in alpha tests, requst access at https://huggingface.co/neta-art/NetaLumina_Alpha if you are interested.

    Neta-lumina-v1.0

    Request access at https://huggingface.co/neta-art/Neta-Lumina if you are interested.

    • Official Release: overall best performance

    Neta-lumina-beta-0624

    • Primary Goal: General knowledge and anime‑style optimization

    • Data Set: >13 million anime‑style images

    • >46,000 A100 Hours

    How  to  Use                                                                     

    Neta Lumina is built on the Lumina2 Diffusion Transformer (DiT) framework, please follow these steps precisely.

    ComfyUI

    Environment Requirements

    Currently Neta Lumina runs only on ComfyUI:

    • Latest ComfyUI installation

    • ≥ 8 GB VRAM

    Downloads & Installation

    The model provided by Civitai is a three-in-one (te, dit, vae) packaged version, which can be run using the comfyui basic workflow without the need to download Text Encoder and VAE separately.

    Original (component) release

    1. Neta Lumina-V1.0

      1. Hugging Face: https://huggingface.co/neta-art/Neta-Lumina/blob/main/Unet/neta-lumina-v1.0.safetensors

      2. Save path: ComfyUI/models/unet/

    2. Text Encoder (Gemma-2B)

      1. Download link: https://huggingface.co/neta-art/Neta-Lumina/blob/main/Text%20Encoder/gemma_2_2b_fp16.safetensors

      2. Save path: ComfyUI/models/text_encoders/

    3. VAE Model (16-Channel FLUX VAE)

      1. Download link: https://huggingface.co/neta-art/Neta-Lumina/blob/main/VAE/ae.safetensors

      2. Save path: ComfyUI/models/vae/

    image/pngWorkflow: load lumina_workflow.json in ComfyUI.

    • UNETLoader – loads the .pth

    • VAELoader – loads ae.safetensors

    • CLIPLoader – loads gemma_2_2b_fp16.safetensors

    • Text Encoder – connects positive /negative prompts to the sampler

    Simple merged release

    Download neta-lumina-v1.0-all-in-one.safetensors,

    md5sum = dca54fef3c64e942c1a62a741c4f9d8a,

    you may use ComfyUI’s simple checkpoint loader workflow.

    • Sampler: res_multistep

    • Scheduler: linear_quadratic

    • Steps: 30

    • CFG (guidance): 4 – 5.5

    • EmptySD3LatentImage resolution: 1024 × 1024, 768 × 1532, 968 × 1322, or >= 1024

    Prompt Book 

    Detailed prompt guidelines: https://civarchive.com/articles/16274/neta-lumina-drawing-model-prompt-guide

    Community                                   

    Discord: https://discord.com/invite/TTTGccjbEa

    QQ group: 1039442542

    Roadmap 

    Model

    • Continous base‑model training to raise reasoning capability.

    • Aesthetic‑dataset iteration to improve anatomy, background richness, and overall appealness.

    • Smarter, more versatile tagging tools to lower the creative barrier.

    Ecosystem

    LoRA training tutorials and components

    License & Disclaimer

    Participants & Contributors

    Community Contributors

    Evaluators & developers: 二小姐, spawner, Rnglg2

    Other contributors: 沉迷摸鱼, poi, AshenWitch, 十分无奈, GHOSTLX, wenaka, iiiiii, 年糕特工队, 恩匹希, 奶冻, mumu, yizyin, smile, Yang, 古神, 灵之药, LyloGummy, 雪时

    Appendix & Resources


    license: other

    license_name: fair-ai-public-license-1.0-sd

    license_link: https://freedevproject.org/faipl-1.0-sd/


    Description

    Neta Lumina release version.

    Checkpoint
    Lumina

    Details

    Downloads
    553
    Platform
    CivitAI
    Platform Status
    Available
    Created
    7/22/2025
    Updated
    9/27/2025
    Deleted
    -

    Files

    netaLumina_v10.safetensors

    Mirrors

    Huggingface (1 mirrors)
    CivitAI (1 mirrors)