CivArchive
    Preview 73603487Preview 73603523Preview 73604068Preview 73604391Preview 73604539Preview 73604750Preview 73604997

    Flat Color - Style

    Trained on images without visible lineart, flat colors, and little to no indication of depth.

    ℹ️ LoRA work best when applied to the base models on which they are trained. Please read the About This Version on the appropriate base models and workflow/training information.

    This is a small style LoRA I thought would be interesting to try with a v-pred model (noobai v-pred), for the reduced color bleeding and strong blacks in particular.

    The effect is quite nice and easy to evaluate in training, so I've extended the dataset with videos in following versions for text-to-video models like Wan and Hunyuan, and it is what I am generally using to test LoRA training on new models now.

    Recommended prompt structure:

    Positive prompt:

    flat color, no lineart, blending, negative space,
    {{tags}}
    masterpiece, best quality, very aesthetic, newest

    Description

    [HIDREAM] LoRA

    config.toml

    # Dataset config file.
    output_dir = '/mnt/d/hidream/training_output'
    dataset = 'dataset-hidream.toml'
    
    # Training settings
    epochs = 50
    micro_batch_size_per_gpu = 1
    pipeline_stages = 1
    gradient_accumulation_steps = 4
    gradient_clipping = 1.0
    warmup_steps = 100
    blocks_to_swap = 20
    
    # eval settings
    eval_every_n_epochs = 5
    eval_before_first_step = true
    eval_micro_batch_size_per_gpu = 1
    eval_gradient_accumulation_steps = 1
    
    # misc settings
    save_every_n_epochs = 10
    checkpoint_every_n_minutes = 30
    activation_checkpointing = true
    partition_method = 'parameters'
    save_dtype = 'bfloat16'
    caching_batch_size = 1
    steps_per_print = 1
    video_clip_mode = 'single_beginning'
    
    [model]
    type = 'hidream'
    diffusers_path = '../hidream-full'
    llama3_path = '../llama-3.1'
    llama3_4bit = true
    dtype = 'bfloat16'
    transformer_dtype = 'nf4'
    max_llama3_sequence_length = 256
    flux_shift = true
    
    [adapter]
    type = 'lora'
    rank = 32
    dtype = 'bfloat16'
    
    [optimizer]
    type = 'adamw_optimi'
    lr = 5e-5
    betas = [0.9, 0.99]
    weight_decay = 0.02
    eps = 1e-8

    dataset.toml

    # Resolution settings.
    resolutions = [1024]
    
    # Aspect ratio bucketing settings
    enable_ar_bucket = true
    min_ar = 0.5
    max_ar = 2.0
    num_ar_buckets = 7
    
    [[directory]] # IMAGES
    # Path to the directory containing images and their corresponding caption files.
    path = '/mnt/d/huanvideo/training_data/images'
    num_repeats = 5
    resolutions = [1024]