CivArchive
    Preview 13473831
    Preview 13474311
    Preview 13478624
    Preview 13478623
    Preview 13474277
    Preview 13474280
    Preview 13474291
    Preview 13474295
    Preview 13474297
    Preview 13474296
    Preview 13474285
    Preview 13474298
    Preview 13474300
    Preview 13474305
    Preview 13474307
    Preview 13474306
    Preview 13474301
    Preview 13474299
    Preview 13474308
    Preview 13474304

    New version is out: https://civarchive.com/models/628865/sotediffusion-v2

    Anime finetune of Würstchen V3.

    This release is sponsored by fal.ai/grants

    Trained on 6M images for 3 epochs using 8x A100 80G GPUs.

    This model can be used via API with Fal.AI

    For more details: https://fal.ai/models/fal-ai/stable-cascade/sote-diffusion


    Please refer to Huggingface for SD.Next UI, Diffusers or UNet models:
    https://huggingface.co/Disty0/sotediffusion-wuerstchen3
    CivitAI page has only the ComfyUI checkpoint models.

    Inference Parameters:

    Download the Main model (8.14 GB file):

    https://civarchive.com/api/download/models/563950?type=Model&format=SafeTensor&size=pruned&fp=fp16


    Download the Decoder model (4.24 GB file):

    https://civarchive.com/api/download/models/563892?type=Model&format=SafeTensor&size=pruned&fp=fp16

    Positives:

    newest, extremely aesthetic, best quality,

    Negatives:

    very displeasing, worst quality, monochrome, realistic, oldest, loli,

    Main:

    Sampler: DDPM or DPMPP 2M with SGM Uniform
    CFG: 7
    Steps: 30 or 40

    Decoder:

    Sampler: Euler a Karras
    CFG: 1 or 1.2
    Steps: 10

    Compression: 42 (or 32 to 64)

    Resolution: 1024x1536, 2048x1152.

    Anything works as long as it's a multiply of 128.

    Training:

    Software used: Kohya SD-Scripts with Stable Cascade branch.
    https://github.com/kohya-ss/sd-scripts/tree/stable-cascade

    GPU used: 8x Nvidia A100 80GB
    GPU hours: 220

    Base

    parameters | value

    • amp | bf16

    • weights | fp32

    • save weights | fp16

    • resolution | 1024x1024

    • effective batch size | 128

    • unet learning rate | 1e-5

    • te learning rate | 4e-6

    • optimizer | Adafactor

    • images | 6M

    • epochs | 3

    Final

    parameters | value

    • amp | bf16

    • weights | fp32

    • save weights | fp16

    • resolution | 1024x1024

    • effective batch size | 128

    • unet learning rate | 4e-6

    • te learning rate | none

    • optimizer | Adafactor

    • images | 120K

    • epochs | 16

    Dataset:

    GPU used for captioning: 1x Intel ARC A770 16GB
    GPU hours: 350

    Model used for captioning: SmilingWolf/wd-swinv2-tagger-v3

    Model used for text: llava-hf/llava-1.5-7b-hf

    Command:

    python /mnt/DataSSD/AI/Apps/kohya_ss/sd-scripts/finetune/tag_images_by_wd14_tagger.py --model_dir "/mnt/DataSSD/AI/models/wd14_tagger_model" --repo_id "SmilingWolf/wd-swinv2-tagger-v3" --recursive --remove_underscore --use_rating_tags --character_tags_first --character_tag_expand --append_tags --onnx --caption_separator ", " --general_threshold 0.35 --character_threshold 0.50 --batch_size 4 --caption_extension ".txt" ./


    dataset name | total images

    • newest : 1.85M

    • recent : 1.38M

    • mid : 993K

    • early : 566K

    • oldest : 160K

    • pixiv : 344K

    • visual novel cg : 231K

    • anime wallpaper : 105K

    • Total: 5.628.499 images

    Note:

    • Smallest size is 1280x600 / 768.000 pixels

    • Deduped based on image similarity using czkawka-cli

    • Around 120K very high quality images got intentionally duplicated 5 times, making the total image count 6.2M


    Tags:

    Tag Format:

    Model is trained with random tag order but this is the order in the dataset if you are interested:

    aesthetic tags, quality tags, date tags, custom tags, rating tags, character, series, rest of the tags

    Date:

    • newest : 2022 to 2024

    • recent : 2019 to 2021

    • mid : 2015 to 2018

    • early : 2011 to 2014

    • oldest : 2005 to 2010

    Aesthetic Tags:

    Model used: shadowlilac/aesthetic-shadow-2

    • score > 0.90 : extremely aesthetic

    • score > 0.80 : very aesthetic

    • score > 0.70 : aesthetic

    • score > 0.50 : slightly aesthetic

    • score > 0.40 : not displeasing

    • score > 0.30 : not aesthetic

    • score > 0.25 : slightly displeasing

    • score > 0.10 : displeasing

    • rest of them : very displeasing

    Quality Tags:

    Model used: https://huggingface.co/hakurei/waifu-diffusion-v1-4/blob/main/models/aes-B32-v0.pth

    • score > 0.980 : best quality

    • score > 0.900 : high quality

    • score > 0.750 : great quality

    • score > 0.500 : medium quality

    • score > 0.250 : normal quality

    • score > 0.125 : bad quality

    • score > 0.025 : low quality

    • rest of them : worst quality

    Rating Tags:

    • general

    • sensitive

    • nsfw

    • explicit nsfw

    Custom Tags:

    • image boards: date,

    • text: The text says "text",

    • characters: character, series

    • pixiv: art by Display_Name,

    • visual novel cg: Full_VN_Name (short_3_letter_name), visual novel cg,

    • anime wallpaper: date, anime wallpaper,

    License

    SoteDiffusion models falls under Fair AI Public License 1.0-SD license, which is compatible with Stable Diffusion models’ license. Key points:

    • 1. Modification Sharing: If you modify SoteDiffusion models, you must share both your changes and the original license.

    • 2. Source Code Accessibility: If your modified version is network-accessible, provide a way (like a download link) for others to get the source code. This applies to derived models too.

    • 3. Distribution Terms: Any distribution must be under this license or another with similar rules.

    • 4. Compliance: Non-compliance must be fixed within 30 days to avoid license termination, emphasizing transparency and adherence to open-source values.

    Notes: Anything not covered by Fair AI license is inherited from Stability AI Non-Commercial license.

    Description

    • Switched to OneTrainer.

    • Trained more.

    • Currently trained on 2,75M images in total.

    • Used the FP16 fix script made by KBlueLeaf.