CivArchive
    Preview 15308319Preview 15308318Preview 15310226Preview 15310227Preview 15310992Preview 15310994Preview 15311120Preview 15311080

    New version is out: https://civarchive.com/models/628865/sotediffusion-v2

    Anime finetune of Würstchen V3.

    This release is sponsored by fal.ai/grants

    Trained on 6M images for 3 epochs using 8x A100 80G GPUs.

    This model can be used via API with Fal.AI

    For more details: https://fal.ai/models/fal-ai/stable-cascade/sote-diffusion


    Please refer to Huggingface for SD.Next UI, Diffusers or UNet models:
    https://huggingface.co/Disty0/sotediffusion-wuerstchen3
    CivitAI page has only the ComfyUI checkpoint models.

    Inference Parameters:

    Download the Main model (8.14 GB file):

    https://civarchive.com/api/download/models/563950?type=Model&format=SafeTensor&size=pruned&fp=fp16


    Download the Decoder model (4.24 GB file):

    https://civarchive.com/api/download/models/563892?type=Model&format=SafeTensor&size=pruned&fp=fp16

    Positives:

    newest, extremely aesthetic, best quality,

    Negatives:

    very displeasing, worst quality, monochrome, realistic, oldest, loli,

    Main:

    Sampler: DDPM or DPMPP 2M with SGM Uniform
    CFG: 7
    Steps: 30 or 40

    Decoder:

    Sampler: Euler a Karras
    CFG: 1 or 1.2
    Steps: 10

    Compression: 42 (or 32 to 64)

    Resolution: 1024x1536, 2048x1152.

    Anything works as long as it's a multiply of 128.

    Training:

    Software used: Kohya SD-Scripts with Stable Cascade branch.
    https://github.com/kohya-ss/sd-scripts/tree/stable-cascade

    GPU used: 8x Nvidia A100 80GB
    GPU hours: 220

    Base

    parameters | value

    • amp | bf16

    • weights | fp32

    • save weights | fp16

    • resolution | 1024x1024

    • effective batch size | 128

    • unet learning rate | 1e-5

    • te learning rate | 4e-6

    • optimizer | Adafactor

    • images | 6M

    • epochs | 3

    Final

    parameters | value

    • amp | bf16

    • weights | fp32

    • save weights | fp16

    • resolution | 1024x1024

    • effective batch size | 128

    • unet learning rate | 4e-6

    • te learning rate | none

    • optimizer | Adafactor

    • images | 120K

    • epochs | 16

    Dataset:

    GPU used for captioning: 1x Intel ARC A770 16GB
    GPU hours: 350

    Model used for captioning: SmilingWolf/wd-swinv2-tagger-v3

    Model used for text: llava-hf/llava-1.5-7b-hf

    Command:

    python /mnt/DataSSD/AI/Apps/kohya_ss/sd-scripts/finetune/tag_images_by_wd14_tagger.py --model_dir "/mnt/DataSSD/AI/models/wd14_tagger_model" --repo_id "SmilingWolf/wd-swinv2-tagger-v3" --recursive --remove_underscore --use_rating_tags --character_tags_first --character_tag_expand --append_tags --onnx --caption_separator ", " --general_threshold 0.35 --character_threshold 0.50 --batch_size 4 --caption_extension ".txt" ./


    dataset name | total images

    • newest : 1.85M

    • recent : 1.38M

    • mid : 993K

    • early : 566K

    • oldest : 160K

    • pixiv : 344K

    • visual novel cg : 231K

    • anime wallpaper : 105K

    • Total: 5.628.499 images

    Note:

    • Smallest size is 1280x600 / 768.000 pixels

    • Deduped based on image similarity using czkawka-cli

    • Around 120K very high quality images got intentionally duplicated 5 times, making the total image count 6.2M


    Tags:

    Tag Format:

    Model is trained with random tag order but this is the order in the dataset if you are interested:

    aesthetic tags, quality tags, date tags, custom tags, rating tags, character, series, rest of the tags

    Date:

    • newest : 2022 to 2024

    • recent : 2019 to 2021

    • mid : 2015 to 2018

    • early : 2011 to 2014

    • oldest : 2005 to 2010

    Aesthetic Tags:

    Model used: shadowlilac/aesthetic-shadow-2

    • score > 0.90 : extremely aesthetic

    • score > 0.80 : very aesthetic

    • score > 0.70 : aesthetic

    • score > 0.50 : slightly aesthetic

    • score > 0.40 : not displeasing

    • score > 0.30 : not aesthetic

    • score > 0.25 : slightly displeasing

    • score > 0.10 : displeasing

    • rest of them : very displeasing

    Quality Tags:

    Model used: https://huggingface.co/hakurei/waifu-diffusion-v1-4/blob/main/models/aes-B32-v0.pth

    • score > 0.980 : best quality

    • score > 0.900 : high quality

    • score > 0.750 : great quality

    • score > 0.500 : medium quality

    • score > 0.250 : normal quality

    • score > 0.125 : bad quality

    • score > 0.025 : low quality

    • rest of them : worst quality

    Rating Tags:

    • general

    • sensitive

    • nsfw

    • explicit nsfw

    Custom Tags:

    • image boards: date,

    • text: The text says "text",

    • characters: character, series

    • pixiv: art by Display_Name,

    • visual novel cg: Full_VN_Name (short_3_letter_name), visual novel cg,

    • anime wallpaper: date, anime wallpaper,

    License

    SoteDiffusion models falls under Fair AI Public License 1.0-SD license, which is compatible with Stable Diffusion models’ license. Key points:

    • 1. Modification Sharing: If you modify SoteDiffusion models, you must share both your changes and the original license.

    • 2. Source Code Accessibility: If your modified version is network-accessible, provide a way (like a download link) for others to get the source code. This applies to derived models too.

    • 3. Distribution Terms: Any distribution must be under this license or another with similar rules.

    • 4. Compliance: Non-compliance must be fixed within 30 days to avoid license termination, emphasizing transparency and adherence to open-source values.

    Notes: Anything not covered by Fair AI license is inherited from Stability AI Non-Commercial license.

    Description

    • This release is sponsored by fal.ai/grants

    • Trained on 6M images for 3 epochs using 8x A100 80G GPUs.

    Checkpoint
    Stable Cascade

    Details

    Downloads
    366
    Platform
    CivitAI
    Platform Status
    Available
    Created
    6/10/2024
    Updated
    9/30/2025
    Deleted
    -

    Files

    sotediffusion_v1.safetensors

    Mirrors

    CivitAI (1 mirrors)