CivArchive
    Preview 119132406
    Preview 119241475
    Preview 119241642
    Preview 119242995
    Preview 119245321
    Preview 119246491
    Preview 119247143
    Preview 119248170
    Preview 119248167

    πŸš€ Z-Image AIO Collection

    ⚑ Base & Turbo β€’ All-in-One β€’ Bilingual Text β€’ Qwen3-4B


    ⚠️ IMPORTANT: Requires ComfyUI v0.11.0+

    πŸ“₯ Download ComfyUI


    ✨ What is Z-Image AIO?

    Z-Image AIO is an All-in-One repackage of Alibaba Tongyi Lab's 6B parameter image generation models.

    Everything integrated:

    • βœ… VAE already built-in

    • βœ… Qwen3-4B Text Encoder integrated

    • βœ… Just download and generate!


    🎯 Available Versions


    πŸ”₯ Z-Image-Turbo-AIO (8 Steps β€’ CFG 1.0)

    Ultra-fast generation for production & daily use


    ⚫ NVFP4-AIO (7.8 GB) πŸ†•

    🎯 ONLY for NVIDIA Blackwell GPUs (RTX 50xx)!
    ⚑ Maximum speed optimized
    πŸ’Ύ Smallest file size
    πŸš€ FP4 precision - blazing fast
    

    Perfect for: RTX 5070, 5080, 5090 owners who want maximum speed


    βœ… Best balance of size & quality
    βœ… Works on 8GB VRAM
    βœ… Fast downloads
    βœ… Ideal for most users
    

    Perfect for: Daily use, testing, RTX 3060/4060/4070


    πŸ”΅ FP16-AIO (20 GB)

    πŸ’Ύ Same file size as BF16
    πŸ”„ ComfyUI auto-casts to BF16 for compute
    ⚠️ Does NOT enable FP16 compute mode
    πŸ“¦ Alternative download option
    

    Note: Z-Image does not support FP16 compute - activation values exceed FP16's max range, causing NaN/black images. Weights are cast to BF16 during inference regardless of file format.

    Perfect for: Alternative to BF16 download (identical inference behavior)


    βœ… BFloat16 full precision
    βœ… Absolute best quality
    βœ… Professional projects
    βœ… Also works on 8GB VRAM
    

    Perfect for: Professional work, maximum quality


    🎨 Z-Image-Base-AIO (28-50 Steps β€’ CFG 3-5)

    Full creative control for pros & LoRA training


    🟑 FP8-AIO (10 GB)

    βœ… Efficient for daily use
    βœ… Full CFG control
    βœ… Negative prompts supported
    βœ… 8GB VRAM compatible
    

    Perfect for: Daily work with full control


    πŸ”΅ FP16-AIO (20 GB)

    πŸ’Ύ Same file size as BF16
    πŸ”„ ComfyUI auto-casts to BF16 for compute
    ⚠️ Does NOT enable FP16 compute mode
    πŸ“¦ Alternative download option
    

    Note: See technical explanation in FAQ below.

    Perfect for: Alternative to BF16 download (identical inference behavior)


    βœ… Maximum quality
    βœ… Ideal for LoRA training
    βœ… Professional projects
    βœ… Highest precision
    

    Perfect for: LoRA training, professional work


    πŸ†š Turbo vs Base - When to Use?


    ⚑ Use TURBO when:

    ⚑ Speed is priority β†’ 8 steps = 3-10 seconds
    πŸ“Έ Production workflows β†’ Consistent high quality
    πŸ’Ύ Quick iterations β†’ Rapid prototyping
    🎯 Simple prompts β†’ Less complex scenes
    

    🎨 Use BASE when:

    🎨 Creative exploration β†’ Higher diversity
    πŸ”§ LoRA/ControlNet dev β†’ Undistilled foundation
    πŸ“ Complex prompting β†’ Full CFG control
    🚫 Negative prompts needed β†’ Remove unwanted elements
    

    βš™οΈ Recommended Settings


    ⚑ Turbo Settings (incl. NVFP4)

    πŸ“Š Steps: 8
    🎚️ CFG: 1.0 (don't change!)
    🎲 Sampler: res_multistep OR euler_ancestral
    πŸ“ˆ Scheduler: simple OR beta
    πŸ“ Resolution: 1920Γ—1088 (recommended)
    🚫 Negative Prompt: ❌ Not used!
    

    🎨 Base Settings

    πŸ“Š Steps: 28-50
    🎚️ CFG: 3.0-5.0 (start with 4.0)
    🎲 Sampler: euler ⭐ OR dpmpp_2m
    πŸ“ˆ Scheduler: normal ⭐ OR karras
    πŸ“ Resolution: 512Γ—512 to 2048Γ—2048
    🚫 Negative Prompt: βœ… Fully supported!
    

    πŸ“Š Quick Overview


    Turbo Versions

    ⚫ NVFP4  β”‚ 7.8 GB  β”‚ RTX 50xx only  β”‚ Max Speed πŸ†•
    🟑 FP8   β”‚ 10 GB   β”‚ 8GB VRAM       β”‚ Recommended ⭐
    πŸ”΅ FP16  β”‚ 20 GB   β”‚ β†’ BF16 compute β”‚ See FAQ ⚠️
    🌟 BF16  β”‚ 20 GB   β”‚ 8GB VRAM       β”‚ Max Quality ⭐
    

    Base Versions

    🟑 FP8   β”‚ 10 GB   β”‚ 8GB VRAM       β”‚ Efficient
    πŸ”΅ FP16  β”‚ 20 GB   β”‚ β†’ BF16 compute β”‚ See FAQ ⚠️
    🌟 BF16  β”‚ 20 GB   β”‚ 8GB VRAM       β”‚ LoRA Training ⭐
    

    πŸ’‘ Prompting Guide


    βœ… Good Example:

    Professional food photography of artisan breakfast plate. 
    Golden poached eggs on sourdough toast, crispy bacon, fresh 
    avocado slices. Morning sunlight creating warm glow. Shallow 
    depth of field, magazine-quality presentation.
    

    ❌ Bad Example:

    breakfast, eggs, bacon, toast, food, morning, plate
    

    πŸ“ Tips

    DO:

    • βœ… Use natural language

    • βœ… Be detailed (100-300 words)

    • βœ… Describe lighting & mood

    • βœ… Specify camera angle

    • βœ… English OR Chinese (or both!)

    DON'T:

    • ❌ Tag-style prompts (tag1, tag2, tag3)

    • ❌ Very short prompts (under 50 words)

    • ❌ Negative prompts with Turbo


    🌐 Bilingual Text Rendering


    English:

    Neon sign reading "OPEN 24/7" in bright blue letters 
    above entrance. Modern sans-serif font, glowing effect.
    

    δΈ­ζ–‡:

    Traditional tea house entrance with sign reading 
    "叀韡茢坊" in elegant gold Chinese calligraphy.
    

    Both:

    Modern cafe with bilingual sign. "Morning Brew" in 
    white script above, "晨曦咖啑" in Chinese below.
    

    πŸ“₯ Installation


    Step 1: Download

    Choose your version based on:

    • GPU: RTX 50xx β†’ NVFP4 possible

    • VRAM: 8GB β†’ FP8 recommended

    • Purpose: LoRA Training β†’ Base BF16


    Step 2: Place File

    ComfyUI/models/checkpoints/
    └── Z-Image-Turbo-FP8-AIO.safetensors
    

    Step 3: Load & Generate

    1. Open ComfyUI (v0.11.0+!)

    2. Use "Load Checkpoint" node

    3. Select your AIO version

    4. Generate!

    No separate VAE or Text Encoder needed!


    πŸ™ Credits


    Original Model

    πŸ‘¨β€πŸ’» Developer: Tongyi Lab (Alibaba Group)
    πŸ—οΈ Architecture: Single-Stream DiT (6B parameters)
    πŸ“œ License: Apache 2.0
    

    πŸ”— Z-Image Base: https://huggingface.co/Tongyi-MAI/Z-Image

    πŸ”— Z-Image Turbo: https://huggingface.co/Tongyi-MAI/Z-Image-Turbo

    🧠 Text Encoder: https://huggingface.co/Qwen/Qwen3-4B


    πŸ“ˆ Version History


    v2.2 - FP16 Clarification

    πŸ“ Updated FP16 descriptions for technical accuracy
    ⚠️ Clarified: FP16 weights β‰  FP16 compute
    πŸ”„ FP16 files are cast to BF16 during inference
    

    v2.1 - NVFP4 Release πŸ†•

    βž• Z-Image-Turbo-NVFP4-AIO (7.8GB)
    ⚑ Optimized for NVIDIA Blackwell (RTX 50xx)
    πŸš€ Maximum speed generation
    

    v2.0 - Base AIO Release

    βž• Z-Image-Base-BF16-AIO
    βž• Z-Image-Base-FP16-AIO
    βž• Z-Image-Base-FP8-AIO
    πŸ”„ ComfyUI v0.11.0+ support
    πŸ“ Qwen3-4B Text Encoder
    

    v1.1 - FP16 Added

    βž• Z-Image-Turbo-FP16-AIO
    πŸ”§ Wider GPU compatibility
    

    v1.0 - Initial Release

    βœ… Z-Image-Turbo-FP8-AIO
    βœ… Z-Image-Turbo-BF16-AIO
    βœ… Integrated VAE + Text Encoder
    

    ❓ FAQ


    Q: Which version should I choose?

    RTX 50xx + Speed β†’ NVFP4 πŸ†•
    Most users       β†’ Turbo FP8 ⭐
    Full precision   β†’ BF16 ⭐
    LoRA Training    β†’ Base BF16
    

    Q: Turbo or Base?

    Fast & simple    β†’ Turbo ⚑
    Full control     β†’ Base 🎨
    

    Q: Will NVFP4 work on my RTX 4090?

    ❌ No! NVFP4 is only for RTX 50xx (Blackwell architecture).

    Use FP8 instead for RTX 40xx and older.


    Q: Do I need separate VAE/Text Encoder?

    ❌ No! Everything is already integrated.

    Just Load Checkpoint and go!


    Q: Works on 8GB VRAM?

    βœ… Yes! All versions work on 8GB VRAM.

    (NVFP4 requires RTX 50xx regardless of VRAM)


    ⚠️ Q: What about FP16 for older GPUs (RTX 2000/3000)?

    Important technical clarification:

    Z-Image does NOT support FP16 compute type. Here's why:

    πŸ“Š Technical reason:
    - FP16 max value: ~65,504
    - BF16 max value: ~3.39e+38 (same as FP32)
    - Z-Image's activation values exceed FP16's range
    - Result: Overflow β†’ NaN β†’ Black images
    

    What actually happens:

    • ComfyUI automatically casts weights to BF16 for computation

    • You can see this in logs: "model weight dtype X, manual cast: torch.bfloat16"

    • "Weight dtype" (file format) β‰  "Compute dtype" (actual calculation)

    For RTX 20xx users (no native BF16):

    • BF16 is emulated via FP32 = slower but works

    • There is no way to run Z-Image in true FP16 compute

    • FP8 with CPU offload may be a better option for limited VRAM

    TL;DR: FP16 and BF16 files behave identically during inference. Choose based on download preference, not GPU compatibility.


    πŸš€ Get Started Now!

    Download β†’ Load Checkpoint β†’ Generate!

    Recommended versions:

    • 🟑 FP8 for most users (best size/quality balance)

    • 🌟 BF16 for maximum quality

    • ⚫ NVFP4 for RTX 50xx speed

    All versions work on 8GB VRAM


    Happy generating! 🎨

    Description

    Z-Image-Base-AIO-BF16

    Checkpoint
    ZImageBase

    Details

    Downloads
    780
    Platform
    CivitAI
    Platform Status
    Available
    Created
    1/28/2026
    Updated
    2/1/2026
    Deleted
    -

    Files

    zImageTurboBaseAIO_zImageBaseAIOBF16.safetensors