CivArchive
    Preview 119436790
    Preview 119436799
    Preview 119436889
    Preview 119436912
    Preview 119436917
    Preview 119436927
    Preview 119436935
    Preview 119436942
    Preview 119436946
    Preview 119436956
    Preview 119437009
    Preview 119437037
    Preview 119437071
    Preview 119437102
    Preview 119437163
    Preview 119437185
    Preview 119437210
    Preview 119437219
    Preview 119437354
    Preview 119437367

    πŸš€ Z-Image AIO Collection

    ⚑ Base & Turbo β€’ All-in-One β€’ Bilingual Text β€’ Qwen3-4B


    ⚠️ IMPORTANT: Requires ComfyUI v0.11.0+

    πŸ“₯ Download ComfyUI


    ✨ What is Z-Image AIO?

    Z-Image AIO is an All-in-One repackage of Alibaba Tongyi Lab's 6B parameter image generation models.

    Everything integrated:

    • βœ… VAE already built-in

    • βœ… Qwen3-4B Text Encoder integrated

    • βœ… Just download and generate!


    🎯 Available Versions


    πŸ”₯ Z-Image-Turbo-AIO (8 Steps β€’ CFG 1.0)

    Ultra-fast generation for production & daily use


    ⚫ NVFP4-AIO (7.8 GB) πŸ†•

    🎯 ONLY for NVIDIA Blackwell GPUs (RTX 50xx)!
    ⚑ Maximum speed optimized
    πŸ’Ύ Smallest file size
    πŸš€ FP4 precision - blazing fast
    

    Perfect for: RTX 5070, 5080, 5090 owners who want maximum speed


    βœ… Best balance of size & quality
    βœ… Works on 8GB VRAM
    βœ… Fast downloads
    βœ… Ideal for most users
    

    Perfect for: Daily use, testing, RTX 3060/4060/4070


    πŸ”΅ FP16-AIO (20 GB)

    πŸ’Ύ Same file size as BF16
    πŸ”„ ComfyUI auto-casts to BF16 for compute
    ⚠️ Does NOT enable FP16 compute mode
    πŸ“¦ Alternative download option
    

    Note: Z-Image does not support FP16 compute - activation values exceed FP16's max range, causing NaN/black images. Weights are cast to BF16 during inference regardless of file format.

    Perfect for: Alternative to BF16 download (identical inference behavior)


    βœ… BFloat16 full precision
    βœ… Absolute best quality
    βœ… Professional projects
    βœ… Also works on 8GB VRAM
    

    Perfect for: Professional work, maximum quality


    🎨 Z-Image-Base-AIO (28-50 Steps β€’ CFG 3-5)

    Full creative control for pros & LoRA training


    🟑 FP8-AIO (10 GB)

    βœ… Efficient for daily use
    βœ… Full CFG control
    βœ… Negative prompts supported
    βœ… 8GB VRAM compatible
    

    Perfect for: Daily work with full control


    πŸ”΅ FP16-AIO (20 GB)

    πŸ’Ύ Same file size as BF16
    πŸ”„ ComfyUI auto-casts to BF16 for compute
    ⚠️ Does NOT enable FP16 compute mode
    πŸ“¦ Alternative download option
    

    Note: See technical explanation in FAQ below.

    Perfect for: Alternative to BF16 download (identical inference behavior)


    βœ… Maximum quality
    βœ… Ideal for LoRA training
    βœ… Professional projects
    βœ… Highest precision
    

    Perfect for: LoRA training, professional work


    πŸ†š Turbo vs Base - When to Use?


    ⚑ Use TURBO when:

    ⚑ Speed is priority β†’ 8 steps = 3-10 seconds
    πŸ“Έ Production workflows β†’ Consistent high quality
    πŸ’Ύ Quick iterations β†’ Rapid prototyping
    🎯 Simple prompts β†’ Less complex scenes
    

    🎨 Use BASE when:

    🎨 Creative exploration β†’ Higher diversity
    πŸ”§ LoRA/ControlNet dev β†’ Undistilled foundation
    πŸ“ Complex prompting β†’ Full CFG control
    🚫 Negative prompts needed β†’ Remove unwanted elements
    

    βš™οΈ Recommended Settings


    ⚑ Turbo Settings (incl. NVFP4)

    πŸ“Š Steps: 8
    🎚️ CFG: 1.0 (don't change!)
    🎲 Sampler: res_multistep OR euler_ancestral
    πŸ“ˆ Scheduler: simple OR beta
    πŸ“ Resolution: 1920Γ—1088 (recommended)
    🚫 Negative Prompt: ❌ Not used!
    

    🎨 Base Settings

    πŸ“Š Steps: 28-50
    🎚️ CFG: 3.0-5.0 (start with 4.0)
    🎲 Sampler: euler ⭐ OR dpmpp_2m
    πŸ“ˆ Scheduler: normal ⭐ OR karras
    πŸ“ Resolution: 512Γ—512 to 2048Γ—2048
    🚫 Negative Prompt: βœ… Fully supported!
    

    πŸ“Š Quick Overview


    Turbo Versions

    ⚫ NVFP4  β”‚ 7.8 GB  β”‚ RTX 50xx only  β”‚ Max Speed πŸ†•
    🟑 FP8   β”‚ 10 GB   β”‚ 8GB VRAM       β”‚ Recommended ⭐
    πŸ”΅ FP16  β”‚ 20 GB   β”‚ β†’ BF16 compute β”‚ See FAQ ⚠️
    🌟 BF16  β”‚ 20 GB   β”‚ 8GB VRAM       β”‚ Max Quality ⭐
    

    Base Versions

    🟑 FP8   β”‚ 10 GB   β”‚ 8GB VRAM       β”‚ Efficient
    πŸ”΅ FP16  β”‚ 20 GB   β”‚ β†’ BF16 compute β”‚ See FAQ ⚠️
    🌟 BF16  β”‚ 20 GB   β”‚ 8GB VRAM       β”‚ LoRA Training ⭐
    

    πŸ’‘ Prompting Guide


    βœ… Good Example:

    Professional food photography of artisan breakfast plate. 
    Golden poached eggs on sourdough toast, crispy bacon, fresh 
    avocado slices. Morning sunlight creating warm glow. Shallow 
    depth of field, magazine-quality presentation.
    

    ❌ Bad Example:

    breakfast, eggs, bacon, toast, food, morning, plate
    

    πŸ“ Tips

    DO:

    • βœ… Use natural language

    • βœ… Be detailed (100-300 words)

    • βœ… Describe lighting & mood

    • βœ… Specify camera angle

    • βœ… English OR Chinese (or both!)

    DON'T:

    • ❌ Tag-style prompts (tag1, tag2, tag3)

    • ❌ Very short prompts (under 50 words)

    • ❌ Negative prompts with Turbo


    🌐 Bilingual Text Rendering


    English:

    Neon sign reading "OPEN 24/7" in bright blue letters 
    above entrance. Modern sans-serif font, glowing effect.
    

    δΈ­ζ–‡:

    Traditional tea house entrance with sign reading 
    "叀韡茢坊" in elegant gold Chinese calligraphy.
    

    Both:

    Modern cafe with bilingual sign. "Morning Brew" in 
    white script above, "晨曦咖啑" in Chinese below.
    

    πŸ“₯ Installation


    Step 1: Download

    Choose your version based on:

    • GPU: RTX 50xx β†’ NVFP4 possible

    • VRAM: 8GB β†’ FP8 recommended

    • Purpose: LoRA Training β†’ Base BF16


    Step 2: Place File

    ComfyUI/models/checkpoints/
    └── Z-Image-Turbo-FP8-AIO.safetensors
    

    Step 3: Load & Generate

    1. Open ComfyUI (v0.11.0+!)

    2. Use "Load Checkpoint" node

    3. Select your AIO version

    4. Generate!

    No separate VAE or Text Encoder needed!


    πŸ™ Credits


    Original Model

    πŸ‘¨β€πŸ’» Developer: Tongyi Lab (Alibaba Group)
    πŸ—οΈ Architecture: Single-Stream DiT (6B parameters)
    πŸ“œ License: Apache 2.0
    

    πŸ”— Z-Image Base: https://huggingface.co/Tongyi-MAI/Z-Image

    πŸ”— Z-Image Turbo: https://huggingface.co/Tongyi-MAI/Z-Image-Turbo

    🧠 Text Encoder: https://huggingface.co/Qwen/Qwen3-4B


    πŸ“ˆ Version History


    v2.2 - FP16 Clarification

    πŸ“ Updated FP16 descriptions for technical accuracy
    ⚠️ Clarified: FP16 weights β‰  FP16 compute
    πŸ”„ FP16 files are cast to BF16 during inference
    

    v2.1 - NVFP4 Release πŸ†•

    βž• Z-Image-Turbo-NVFP4-AIO (7.8GB)
    ⚑ Optimized for NVIDIA Blackwell (RTX 50xx)
    πŸš€ Maximum speed generation
    

    v2.0 - Base AIO Release

    βž• Z-Image-Base-BF16-AIO
    βž• Z-Image-Base-FP16-AIO
    βž• Z-Image-Base-FP8-AIO
    πŸ”„ ComfyUI v0.11.0+ support
    πŸ“ Qwen3-4B Text Encoder
    

    v1.1 - FP16 Added

    βž• Z-Image-Turbo-FP16-AIO
    πŸ”§ Wider GPU compatibility
    

    v1.0 - Initial Release

    βœ… Z-Image-Turbo-FP8-AIO
    βœ… Z-Image-Turbo-BF16-AIO
    βœ… Integrated VAE + Text Encoder
    

    ❓ FAQ


    Q: Which version should I choose?

    RTX 50xx + Speed β†’ NVFP4 πŸ†•
    Most users       β†’ Turbo FP8 ⭐
    Full precision   β†’ BF16 ⭐
    LoRA Training    β†’ Base BF16
    

    Q: Turbo or Base?

    Fast & simple    β†’ Turbo ⚑
    Full control     β†’ Base 🎨
    

    Q: Will NVFP4 work on my RTX 4090?

    ❌ No! NVFP4 is only for RTX 50xx (Blackwell architecture).

    Use FP8 instead for RTX 40xx and older.


    Q: Do I need separate VAE/Text Encoder?

    ❌ No! Everything is already integrated.

    Just Load Checkpoint and go!


    Q: Works on 8GB VRAM?

    βœ… Yes! All versions work on 8GB VRAM.

    (NVFP4 requires RTX 50xx regardless of VRAM)


    ⚠️ Q: What about FP16 for older GPUs (RTX 2000/3000)?

    Important technical clarification:

    Z-Image does NOT support FP16 compute type. Here's why:

    πŸ“Š Technical reason:
    - FP16 max value: ~65,504
    - BF16 max value: ~3.39e+38 (same as FP32)
    - Z-Image's activation values exceed FP16's range
    - Result: Overflow β†’ NaN β†’ Black images
    

    What actually happens:

    • ComfyUI automatically casts weights to BF16 for computation

    • You can see this in logs: "model weight dtype X, manual cast: torch.bfloat16"

    • "Weight dtype" (file format) β‰  "Compute dtype" (actual calculation)

    For RTX 20xx users (no native BF16):

    • BF16 is emulated via FP32 = slower but works

    • There is no way to run Z-Image in true FP16 compute

    • FP8 with CPU offload may be a better option for limited VRAM

    TL;DR: FP16 and BF16 files behave identically during inference. Choose based on download preference, not GPU compatibility.


    πŸš€ Get Started Now!

    Download β†’ Load Checkpoint β†’ Generate!

    Recommended versions:

    • 🟑 FP8 for most users (best size/quality balance)

    • 🌟 BF16 for maximum quality

    • ⚫ NVFP4 for RTX 50xx speed

    All versions work on 8GB VRAM


    Happy generating! 🎨

    Description

    Z-Image-Turbo-AIO-NVFP4

    Checkpoint
    ZImageTurbo

    Details

    Downloads
    159
    Platform
    CivitAI
    Platform Status
    Available
    Created
    1/31/2026
    Updated
    2/1/2026
    Deleted
    -

    Files

    zImageTurboBaseAIO_zImageTurboAIONVFP4.safetensors